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Quantum scattering from arbitrary boundaries
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We present a conceptually and numerically simple method for obtaining scattering eigenstates from arbitrary
disconnected open or closed boundaries with very general boundary conditions. As a side effect of the deri-
vation, a solution for partially penetrable walls is also found. As in the boundary integral Green-function
method, an integral equation over the boundary results; however, our approach-iusesion potentials
(which can have finite or infinite strengtto enforce boundary conditions and construct the governing equa-
tions, rather than Green’s theoref$1063-651X97)11308-3

PACS numbgs): 05.45:+hb, 03.40.Kf, 03.65.Nk

[. INTRODUCTION closed billiards, usually aimed at either the inside or outside
solutions. A recent work has exploited connections between
Much recent experimental and theoretical interest hascattering problems and closed billiarfls|. Plane waves
been directed at boundary-value problems in two and threBave been used as basis functions for matching the solutions
dimensions. Mesoscopic quantum dots and semiconduct&t a boundary6]. Perhaps the most popular method to solve
heterostructures have become very important research todpoundary-value problems is the boundary integral method
and potentially useful devices. These are often accuratell/], which is based on the conversion of a differential equa-
treated as billiard systems. Recently, quantum engineeringion into an integral over the boundary of the physical region.
experiments on metallic surfacgk] have constructed quan- Although the boundary integral method is very useful, it has
tum walls made of relatively few atoms. If the atoms aresome drawbacks. Most notably, a boundary integral calcula-
close enough together and some sorts of resongi@tese  tion is valid only on one side of a closed boundf8y, mak-
avoided, one may build devices with nearly perfect walls adng it necessary to obtain different expressions for the solu-
illustrated by “quantum corrals’{3]. Ordinary and super- tion inside and outside. It is also difficult to solve problems
conducting thin microwave cavities have been constructed twith disconnected and open boundaries.
address several issues involving quantum chaology and Itis desirable to have a method whi@h provides correct
quantum localization; these are nearly exact quantum bilsolutions on all sides of each boundafly) gives solutions
liards. Of course, a solution to waveguide problems has beewhen a given asymptotic behavior is imposed away from the
of great technological importance for decades. boundary, (ii) is simple and fast numerically, an@v) is
This paper strikes out in a different direction than mostamenable to perturbation theory and other analytic approxi-
theoretical treatments, arriving at an interestiagd acces- mations in “small” changes in the shape of the boundary
sible) approach to solving problems with sharp-walled[7].
boundaries, e.g., billiards, waveguides, and various com- Properties(i) and (i) are intrinsic to scattering theory.
pound objects including baffles, chambers, etc. While thélowever, scattering theory assumes that the boundary con-
discussion here focuses on the Sdinger equation in two ditions are incorporated into the free Green function, while
dimensions, the principles are applicable to other wave equécattering takes place off of a potential. If we can create a
tions in two or more dimensions. potential which in an appropriate limit forces the wave func-
A nonrelativistic quantum-mechanical problem is solvedtion to satisfy the boundary conditions, we may use a scat-
only if one has a wave-function satisfyirgpth the Schie  tering approach to the problem.
dinger equation and the appropriate boundary conditions. In this work we show that a 8-wall” potential accom-
The boundary conditions play an essential role in the sysplishes this goal. Consider
tem’s dynamical behavior. For example, in billiard problems
(free particles confined to finite regions of configuration _
spacg, wave-function propertiegsuch as nodal patterns, V(r)—fcds 1(8) 8 =r(s){a(s) ~[1~ a(s)]ons},
“scarring,” etc,) and energy spectrum statistics, are quite (1)
different if the corresponding classical system is integrable
(e.g., a circle or squayer chaotic(e.g., a Bunimovich sta- where the integral runs over the surfaéeThe boundary
dium or Sinai billiard [4]. condition[9]
Several approaches exist to finding scattering solutions to
a(S)P(r(s))|et+[1— a(8)]dns ¥(r(s)]e=0  (2)

*Electronic mail: luz@monsoon.harvard.edu then emerges as an appropriate limit of the potential’s pa-
Electronic mail: lupu-sax@typhoon.harvard.edu rameters ¢— ). For finite y, the potential has the effect of
*Electronic mail: heller@physics.harvard.edu a penetrable or “leaky” wall. A similar idea has been used
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to incorporate Dirichlet boundary conditions into certain . , ) o )
classes ofsolvable potentials in the context of the path- Y(s")= (s )+7J ds’ Go(s",s") ¥(s'). (7
integral formalism[10]. Here we use th& wall more gen-

erally, resulting in a widely applicable and accurate proceiye can formally solve this equation, obtaining
dure to solve boundary condition problems for arbitrary

shapes. T T— E1-15 g
This paper is organized as follows. In Sec. Il we present V=l1=7 Gol e ®

the scattering theory approach for leaky and impenetrable ~ ~ , ,
Dirichlet walls. We solve two analytic examples in Sec. Ill. Wherey and¢ stand for the vectors aj(s)’s and¢(s)’s on

A numerical version of the method is given in Sec. IV, fol- the boundary, and for the identity operator. The tildes
lowed by some applications in Sec. V. The applications contemind us that the free Green-function operator and the wave
sidered include numerical solutions of some open systemy€ctors are evaluated only on the boundary.
an analysis of the quality of the numerical method, perturba- We define
tion of boundaries, and closed billiard problems. We leave - =
the derivations of the general boundary conditi®sto Ap- T=y[l=yGol " 9
pendix B. o ] o

and then it is easy to see thgg in Eq. (5) is given from Egs.

Il. BOUNDARY WALL APPROACH (8) and(9) by

Consider the Schrdinger equation for al-dimensional s ,
system, H(r)¢(r)=Eu(r), with H=H,+V. As is well Ty(r(s ))—fds T(s'.s) ¢(s). (10
known, the solution fori(r) is given by
We can put Eq(9) into another form by formally expand-

¢(r)=¢(r)+J dr,Gg(r,r’)V(r’)I/I(r’), (3) Ing ina power series

where ¢(r) solvesH(r) ¢(r)=E¢(r), andG§(r,r’) is the YT=yGol t=y T+y>, [¥Gol. (12)
Green function forH,. Hereafter, for notational simplicity, =1
we will suppress the superscriftin G(E).

Now we introduce as-type potential In this way we find

v<r)=yfcds 8(r—r(s)), 4 T(s”,s’):y( 5(3~—sf)+j§l Ti(s",s) |, (12

where the integral is ovef, a connected or disconnected where
surface.r(s) is the vector position of the poirg on C (we
will call the set of all such vectorS), andy is the potential’s . .
strength. ClearlyV(r)=0 forr ¢ S. TU(s",s")= ij ds; ... ds; Go(s"s)

In the limit y—oo, the wavefunction will satisfy Eq2)
[with a(s)=1] as shown below. In Appendix B we deal X Go(sj,Sj-1) --- Go(s2,81) d(s1—8').
with more general boundary conditions and a potential (13)
strengthy(s) which may vary over the curve. For finitg a
wave function subject to potentied) will satisfy a “leaky” In order to make contact with the standarchatrix for-
form of the boundary condition as shown in Appendix A.  malism in scattering theorj1], we note that a operator

Inserting the potentigh) into Eq.(3), the volume integral  for the whole space may be written as
is trivially performed with thed function, yielding

t(rf,ri)=J ds’ds 8(r¢—r(s")) T(s",s")8(r;—r(s")).

H0) =90+ [ 35 Golrr(s)ur(s) "

=(r)+ chs’Go(r,r(s’))T¢(r(s’)). (5) Finally, we observe that Eq6) can be written as

Thus, if y ¢(r(s))=T,(r(s)) is known for alls, the wave y=L1+GoTIé. (15

function everywhere is obtained from E¢p) by a single

quadrature. For=r(s") some point ofS For y— o, the operatoil converges to—[éo]*l. Inserting

this into Eqg.(15), we have
p(r(s")=(r(s")+ nydS’Go(r(S”),r(S’))l/f(r(S’)), P=[T-Cy[Co] H1%=0. (16)

6
© So, ¢ satisfies a Dirichlet boundary condition on the surface
which may be abbreviated unambiguously as C for y=oo,
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ll. ANALYTIC EXAMPLES As an application let us consider ¢(r)

To illustrate the results of Sec. Il, we explicitly analyze ;Jn(kr)exdma]//\f, with A a normalization constant. We

i - ave

two two-dimensional systems below. We assume

Ho(r)= —ﬁ2/(2,u)Vr2, the Hamiltonian for a free particle of o

massu. In this caseGy(r,r';k)=c HM(k|r—r']), where T¢,(6”)=yj da’( S(0"—6")+
E=k?42/(2u), o=(2ulk?)(—i/4), andH{ is the zero- 0

order Hankel function of the first kind, which corresponds to * vF,

outgoing spherical solutions of the free Safirmer equation + 22 ———cogl(6"-6")]
in two dimensiong12]. =1 1-2myF

YFo
1-27mvyF,

A. Free particle interacting with a circle XNJn(kR)ean 0']
ConsiderC={(x,y) € R? | x*+y?=R?}, parametrized by 1
6. From Eq. (13) we have theT()s given by (u(#") =+X/Jn(kR)exqm0”]. (21)
=(R.6"), u(6')=(R,6")) (1=2myFo)
T, 0" )= o Hél)(k\/ER 1-cod0'—0']), The wave function everywhere is given by E§), or
A7 1 27 yWiy(r) _
W(r)=— J”(kr)+—[1—27ryF i J(kR) |exdind],
and (=2,3,...) " (22)

) . (2w i
TO(0",6")=(y0) | d6,...ds, with
0

XHY (kyV2R{1—-cog 6"— ;1) - -
XHP(ky2R\1—cog 6;— 6,])

XHé,l)(k\/fRJl—cos{ 6,—6']). (18  This integral can be performed by again using Eq. 8.531 in
Ref. [13], and one findsW,(r)=aJn(kp-)HB(kp-),

The integrals in Eq(18) can be solved with the help of Wherep-. (p-) is the largersmalle) betweerr andR. Note

Wi (r)=1/(27) [37d 8" Go(k\r?+ R?—2rRcog 0"])

Xexding"]

the identity(see Eq. 8.531 in Ref13)), that W,(R)=F,. Thus Eq.(22) leads to
(k2RI —co3 0] 1 Jn(kr) : .
H"(kv2Ry1—cog 4]) (r)=— exdind] if r<R
1-27yod, (kR HM(KR)
=Jo(kRHP(kR) + 221 ,3,(kR)HY(kR)cog | 6] (23
1 2 Jn(KRPHP (kr
(with J, and H(*) the first kindI-order Bessel and Hankel ¢(r):%3n(kr)+ Y913 (kR)] ?1)( )
functions, respective)y and also with the relationl {,I, in- 1-27yody(kR)H (kR)

tegers [37d6cogl (60— 6')]cogl(6—0")]=27 if 1,=1,=0
and w&,l,zcos{ll(a’—e’)] otherwise. So, after tedious but
straightforward ~ calculations, one can show thatOne can verify(for instance, by directly solving the Schro

Xexdinf] if r>R.

(i=123...) dinger equationthat Eq.(23) is the correct solution of a
two-dimensional particle interacting with a radi@&function
j ” [14].
- (y2m)![ . : . - _
TV (9", 0")= Fol+2>, Flicogl(6"—6")]], Now we consider the limity— + . We denote the radial
r =1

part of (r) by f (r) and we have the following(i) For
r<R, f.(r) is different from zero only ikR= «,,, where
0 o ) anm is the mth root of J,. In this case
whereF|=cJ(kR)H;”(kR). The full T matrix is obtained  f_(r)=J,(a,./R), the correct solution for a particle con-

by putting Eq.(19) into Eq. (12). Since the sum over the fined in a circle. (i) For r>R, f..(r)=i[J,(kr)Y,(kR)

TU's is a geometric series, the calculations can be per-_3. (kR)Y,(kr)/HM(kR), with Y, the n-order Bessel

formed exactly, and we find function of second kindNeumann function Once more we
get the exact solution, this time for a free particle outside an

(19

- 58" — 04 vFo impenetrable circular wall.
(6",0")="y| &( ) 1 2myF,
B. Free particle interacting with an infinite line
+2> R codl(6"— 01| |. (20 Often one may be interested only in a particular kind of
=1 1-2myF incoming waveg(r). In this case it is not necessary to cal-
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culateT, but justT,. Here we show a direct calculation of
T, for C the line x=0 (parametrized byy) and ¢(r)
=exli(kx+ky) VA, with k?=kZ+ k7, and\ an appropriate
normalization constant. We also assukge-0, i.e., ¢ is in-
coming from the left(in the x direction.

Putting Eq.(12) into Eq. (10), we can easily show that
[r(y)=(0y)]

N
zzf<r>=¢<r>+j21 05y Go(rr(s)) #(r(s))
- j

N
%¢<r>+j21 05y Go(rr(9)) 9l (s)), (28)
- j

with s; the middle point of’; andr;=r(s;). Now, consider-
ing r=r; we write ¢(ri)=¢(ri)+EJN:17 Miji(r;) (for M,
see discussion below If W= (¥(ry), ... ,¥(ry)), and

1 - .
To(y)=exiky]l 2 [71(0)]
=0 O=(¢(ry), ...,(ry)), we have¥? =d+ yMW¥, and thus

1 _ 1 y¥=Td , with T=y(I—yM) %, which is the discretd
:Nexr[lkyy] m, (24 matrix. So

N
wherel(z)=o [ 2dy H{P(k\y?+2?) exdik,yl. Y‘I’i:(T‘D)i:VZ [(1=yM) 1], (29)

By inserting Eq.(24) into Eq. (5), we have =

and
s = = exdikoy]| exikod+ — | (o5 N

N y 1-1(0) ¢(r)%¢(r)+j21 Go(r,1y) A (TD);, (30

The integrall is solved with the help of identity Eq.

6.616-3 in Ref[13], or where we have used a mean value approximation to the last

integral in Eq.(28), and defined);, the volume ofC;.
It follows from Eg. (28) that

M .
I(x)=- exfd iky|x|]. (26)
%k X MiJZJ ds Gy(ri,r(s)). (31)
¢
Defining ¢=(yu)/(ih%k,), T(k)=1/(1-¢), and R(k)  Unless otherwise mentioned, we will approximate
=Z/(1-2), we finally find
Mij~Go(ri.ry) 4 (32

in our example calculations. HoweveGy(r;,r;) may di-

1 .
()= 5 exdikyy] @m ( may.
verge fori=j (e.g., the free-particle Green functions in two

(exdik,x]+ R(k ) ex —ikx]) if x<0 or more dimensions So, for the diagonal termidl;; we ex-
X * ) X X ) plicitly perform integral(31). We discuss these approxima-
T(ky)exdik,x] if x>0. tions in detail in Sec. V B.

(27) If we considery—, it is easy to show from the above
results that

We observe that the infinite line is a separable system.
Thus the solution of the Schilinger equation is a plane
wave in they direction times the solution of a one-

dim_ensionaI(S funcFion in thex dir_ection. Actually, one can Equation(33) is then the approximated wave function of a
Veb;'f}’ thoTlttEq.Q?) lstexactly f'” th;? forfm, mereforgl we hl?\’e particle undeH, interacting with an impenetrable regidh
obtained the correct wave function for the problem. If we V. APPLICATIONS

take the limity— +«, the line becomes an infinite wall, and
¥ should be zero fox=0 (recall that the incident wave  Here we shall to explore the possibilities of applications
comes from the left Indeed, this is the result we obtain from for the method described in previous Sec. IV. We concen-
Eq. (27). trate on two-dimensional systems and assyme=, which
corresponds to Dirichlet boundary conditions for the wave
function onC. Thus from now on the calculations are done
by using Eq/(33), where we consider only sef§;} such that

As discussed in Sec. Il and illustrated in Sec. Ill, the keyA;=A a constant(all the curvesC; have the same total
idea in our method is to calculafeand/orT ;, onC, and then  length A). For the plots of|(x,y)|?> we take a grid of
to perform integral5). Unfortunately, in the great majority 400X 400 points in thex-y plane. Since, for our purposes,
of cases the analytical treatment is too hard to apply. In suctve are only concerned with relative amplitudes, in each re-

N
w<r>~¢<r>—j§1cao<r,r,-mj(M-lcb)j. (33)

IV. T MATRIX: A NUMERICAL TREATMENT

cases we consider the problem numerically.
We divide the regiorC into N parts,{Cj};—1 .. n. Then
we approximate

gion considered we normalize the maximum valug| of?
(or ¢ in Sec. VD to be 1. For simplicitysi=2u=1, so
E=K2.
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Semi-Circle Parabola FIG. 2. Scattering of plane waves by diffraction ndts. Den-

sity plots of| T| for the diffraction nets ir{@). The diffraction effects

are readily identified in thg€T| matrix as the bright patterns off the
main diagonal.

l Figure Z2a) shows a diffraction net formed by five seg-

ments of line alongy=0. Each has length 0.4 and is sepa-

rated from the next by a distance @j 0.21, (ii) 0.42, (iii)

0.84, and (iv) 0.42. For the incident plane wave

FIG. 1. (a) Scattering of plane waves by a semicircle and aA =2/15~0.42, with the wave vector forming angles of 0°

segment of the paraboléb) Density plots of| T| for the semicircle  [(i)—(iii)], and 30°[(iv)], with the x axis.

and the segment of the parabolg@ The gray scale is valid for all In Fig. 3(@ we consider two semicirclegepresented in
plots of || and|T] in this paper. the top left graphic The ¢'s are ¢(r)=exikx], and
d(r)=Jo(k|r—r.|) [with r. being (0,0) and(3.5,3.5]. For

A. OpenC’s the threek=20 (A~0.31), so thél matrix displayed in Fig.

Figures 1-3 show a sample of different open formsdor 3(b) is the same in all cases.

In Figs. 1-3a) we plot||2. Density plots of the modulus of _
the corresponding matrix elemen}$;;| are presented in B. Performance of the numerical method

Figs. 1-3(b). We used 20@400) points on theC's for Figs. The numerical solutiofi33) approaches the solutidb) as
1 and 2(3). ThusT was obtained by inverting a 26200  N_,«, In practice, we choosh to be some finite but large
(400x 400) matrix. Here we should note th@tby construc-  nymper. In this section we explain how to chodseor a

tion the T's are symmetric matrices; ar(d) in general, the  given problem, and how the approximatié3®) affects this
larger |T;;|'s are those from a band around the main diago-chjce.

nal, as one can see in the figures. In order to analyze the performance of the numerical so-
In Fig. 1(52‘) we show the scattering of a plane wave by thejytion, we must define some measure of the quality of the
semicirclex“+y“=1 (x=0), and by the segment of pa- sojution. We measure how well a Dirichlet boundary blocks

rabolax=—y? (-1<y<1). The wavelength\=2x/k is  the flow of current directed at it. Thus we measure the cur-
2w/15~0.42. In both cases we consider three differentgnt

angles between the wave vector of the incoming wave and
the x axis: 0°, 45°, and 180°. j=Im{g* (r)Vi(r)}, (34
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[ asa@iron i-
M“': Ci (35)

AGO(rivrj)a I¢J1

which we call the “fully approximated”M. The next is a
more sophisticated approximation with

[[asaron  js-gl<
¢ k
Mij: (36)

K

AGo(ri,r]‘), |Si—Sj|2E,

which we call the “band-integratedM because we perform
the integrals only inside a band &f(27) wavelengths. Fi-
nally, we consider

Mij:f ds Gy(r;,r(s)) Vij, (37)
¢

which we call the “integrated™.

Numerically, the “band-integrated” and “integratedvi
require far more computational work than the “fully ap-
proximated” M which requires the fewest integrals. All
methods of calculatin/l scale a®D(N?). The calculation of
T or T® from M scales agO(N?®) and the calculation of
(r) for a particularr from a givenT® scales asO(N).
Which of these various calculations dominates the computa-
tion time depends on what sort of computation is being per-
formed. When computing wave functions, computation time
is typically dominated by the large number ©{N) vector
multiplications. However, when calculatingi(r) in only a
small number of places, e.g., when performing a flux calcu-
lation, computation time is often dominated by t&¢N?®)
construction ofT®.

In Fig. 4 we plot loggZ vs p for the three methods above
and 2<p=<30. We see that all three methods block more
than 99% of the current fags>5. However, it is clear from
the figure that the “integratedM and to a lesser extent the
band integratedM strongly outperform the fully approxi-
matedM for all p plotted.

(b)

FIG. 3. Scattering by the two semicircles represented in the top C. Perturbation theory
left graphic. The incomingb’s are(top right a plane-wave function
and (bottom) a Bessel functiord,. (b) Density plot of|T| for the
two semicircles in(a). It is interesting to note the much richer
structure of thel' matrix for the two semicircles in comparison with
the T matrix for the single semicircle in Fig.(h).

One can use perturbative methods to salieof similar
shapes. Consider two curve®, andC?, of same total length
[15], as displayed in Fig. 5. It is not difficult to write down a
formal expression relating their matrices. A bit of algebra
shows[with the help of Eqs(9) and (11)]

behind a straight wall of length To simplify the analysis TB=TAI-T TA] '=TAU+T TA+T TAT TA+...),
we integratg - n over a “detector” located on one side of a (38
wall with a normally incident plane wave on the other side.

We divide this integrated current by the current which wouldWhere

have been_ inci<_jent on the deFec_tor Witho_ut_ the wall present. F(SU’S!):Gg(sn,sr)_Gg(sn,sr)

We call this ratio7 the transmission coefficient of the wall.

Instead of7 as a function ofN, we consider7 vs p, where =Go(rB(s"),rB(s"))— Go(rA(s"),r’(s")),
p=2wN/(Ik) is the number of boundary pieces per wave- (39)
length.

We consider three methods of constructing the malitix ~ with rB(s) andr”(s), respectively, the vector positions of
for each value op. The first is the approximation used in the the points onC? andC”. If the C’s are similar " is small and
applications in this papgwhere typicallyp~40) we may truncate Eq38) at some order id'. Although, for
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T
fully-approximated —o—
1 band-integrated —— _|
integrated —B—

FIG. 4. Transmission of a finite flat wall for
the various approximations ®f. For the “band-
integrated” methodx= 161r.

logyo T

6 ) 1 ' 1 !
5 10 15 20 25 30
p

the purposes of the present work, we are not going to defhe exact ground-state energy of the box corresponds to
velop the above equations any further, we will, for a particu-k= \27r. From the plots of | in (i) and (iii) we see that
lar example, study EQq(38) in its simplest form, i.e., by the wave function inside the square is quite small. To give an
taking the zero-order approximatiait~TA. order of magnitude, the maximum bf|? inside the box is

In Fig. 6 we have the curvex=(1/2)sif4my] about 40 times smaller than the maximum |¢i? outside
(O<y=w/2) and an incident plane wavé(r)=exilikx],  [see the plot ofy(x,})|? againstx for these two casdslf
k=15. We plot in Fig. 6a) |¢/|" calculated by using in Ed. e 4 further away from the resonance energy,#haithin
(33) (i) the correctnumerical T, and(ii) the (numerical T {he hox practically vanishes. That is, the resonances are very
for a straight line of same total length as the sinelike CUNVE&harp in energy. For example, if we assume the resonance
considered. In all cases we take 200 point€°da obtain the | \iqth AE to be the difference between the energiegiiof

T matrix. The values of arel=0.1, 0.3, 0.5, agd 0.7. Fora gng (i), thenAE is just 1% of the correct ground-state en-
better comparison, we plot in Fig(® |(x,y)|* (for fixed ergy.

y’s) as function ofx. We see that the solutions using the The maximum amplitudes fog within C is reached at
matrix for a straight line, when compared with those of COlk=1.001/2, an error of only 0.2%. In the density plot in

rectT, are ??109 foi =h0.1 and O|'3' intermediate fd’:]: 0.5, " (ji), the amplitudes inside the square are so much higher than
and worst foil =0.7. These results are not due to the partiCUug geattering wave outsidaround 50 timesthat to obtain
lar sha}pe assumed fat We have done this same kind of ¢ o contrast we have plotted Jg@|? instead of| ¢|2. We
a_malyS|s for other shapes and fom_md that for small Qeformaélso comparéy(x,1/2)? calculated numericallysolid line)
tions of the curves, one can obtain good results by just COMgi, the exact solutionsin(mx)sin(/2)|? (dashed ling We
sidering the. zeroth-order perturbative expansion of evenymost cannot distinguish between the two. By using lafger
otherT matrix. matrices, one can narroE as well improve the values for
the resonance energy.
D. Closed(’s: billiard problems We may consider the effect of changing the direction of
A last point we shall discuss i as a closed curve, with the incident wave. For the calculations of the ground state

its inside region being then a billiard. In this case our proce-2P0Vve, different choices fof give the same sort of results

dure provides a scattering approach for the quantization dfiSPlayed in Fig. 7), even for the cases of=0 and
the system, which is, however, different from other scatter-f= 7/2. However, there is an angular dependence2 when we
ing methodg16]. conS|d<_ar (_jegenerate states. For instance Efer507~, the

The idea is straightforward. We have an incident wavelhree incident wave vector$~8.13° (k=7 k,=m),
function ¢ of energyE. If E is not a resonance energy of the ¢=45° (kx:577’ky:5_77)' and 9“81-87° K=, Ky=71)
billiard, ¢ is the appropriate scattering solution outsitiend ~ correspond, respectively, to the eigenstates: 7m=1;
zero inside. But ifE is an eigenenergy of the problem, then
¢ should be, inside the billiard, a linear combination of the
eigenfunctions corresponding to that particular energy.

To verify this, we suppose a two-dimensional square box
[with corners located at0,0), (0,1), (1,1) and (1,0)]. The
quantized energies are?(n?+m?) (n,m=1,2,...),with
the wave functions(up to a normalization constant
sinnmx]sifimmy]. For the incoming waves we consider
#(r) =exdi(kx+ky)], with k,=kcogd] and k,=ksin 4]
(E=k?). In the numerical calculations of th& matrix,
N=200.

In Fig. 7@ we have 6=m/4 (k=k,) and (i)
k=0.997%/2, (i) k=1.001/27, and (iii) k=1.004/21. FIG. 5. Two curves® andC® of the same total length.
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FIG. 6. (a) Scattering of the plane waves by sinelike shapes calculated(iyithe correctT matrix and(ii) the T matrix for a straight
line. (b) Same aga), but now for|(x,y)|? as a function ok for some fixed values of.

n=5m=5; andn=1m=7. When the incident plane wave, Finally, we briefly give an example of resonance for an
with the correct resonant wave numbdefwhich in our cal-  open curveC. Consider two semicircles separated by a dis-
culations is around 0.1% off the exact valyBOrr), has one tanced, as schematically represented in Fig. 8. The incoming
of the above three directions, then only that particular eigenwave is ¢(r)=exgikx], with k=10. For theT matrix we
state is excited. For arbitrary direction,is a linear combi-  take 400 points o@. Varyingd we can have pattern forma-
nation of the degenerate states. tions within the semicircle region. In Qetall we plot
In Fig. 7(b) we show the plot of they for (i) 6~81.87°, |z//(x,0.'_53)|2_ for two very close values cd which shows the
(i) 6=45°, and(iii) 6~26.56°.(i) and i) agree very well ~dramatic difference of amplitudes af in and out of the
with their corresponding single eigenstates. Fiof, we find semicircle region according to whether or not we are in reso-

that the coefficientsc, , of the linear combination are "aMC€:

¢, 7=4.317, c55=—7.096, andc;;=—1 (we have set

c;1=—1 and normalized the other two in terms of. itVe VI. CONCLUSIONS AND PROSPECTS

also comparey(3,y) from our calculationgcontinuous ling The scatteringr matrix which we calculate in this paper

with the exac{dashed lingfor all cases. A theory explaining is an object intrinsic to the shape of the walls and the energy;
how the c’s depend oné will be the subject of a future it takes any incoming conditiorp(r) and turns it into a
contribution. solution which vanishes on the wallor satisfies other
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FIG. 7. (a) Scattering of plane waves by a square billiard for three different valuks (b) Plots of the scattering excited inside the
square billiard for three different angles of the incident wave vectors. In detail we compare thé&eréiouous lingand numerica(dashed

line) #(0.5y)’s as functions ofy.

boundary condition there; see Appendix B also has a very
appealing physical interpretation: referring to EQs)), (5),

and (10), we see that the elemem{s”,s’) is the amplitude
for hitting the walls for the first time at(s’) and for the last

wavelength
—

time atr(s”). All intermediate multiple collisions with dif-
ferent parts of the wall are included if(s",s’). After a
discretization and inversion of the boundary Green function
to obtain T;;=T(s;,s;), inspection of the structure of;;
reveals the following general propertig$) |T;;| is large for
Ir(si)) —r(sj)|<\(E), where\(E) is the wavelength at en-
ergy E; (2) sharp corners and wall ends tend to give brighter
rows and columns in the density plots df [see Figs.
1-3b)], corresponding to higher amplitude for starting or
leaving from such sources of diffraction; af®) other bands

in |T;;| reveal scattering between distinct or disjoint sections
of walls that are reached by travel through space.

We make two points regarding the case of clogksl
First, we have seen from the square billiard example that the
resonances are very narrow, and the method gives very good
results for the eigenstates. The computational time necessary
in scanningk to find the correct resonances is common to all
boundary methods, and is the “price paid” for the efficiency
of working in the reduced space of the boundary only.

The second point concerns the question: what is the most
appropriatep to find the bound states? Except for degenera-

FIG. 8. Scattering of plane waves by two semicircles for differ- cies, the bound-state wave function dominates near the

ent distancesl between them.

bound-state energies, and one can be fairly loose about the
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precise nature ob. In the case of degeneracy induced by
symmetry, the incoming wave will excite a particular linear
combination: one should of course choose the incoming
wave with the desired symmetry. For example, for the square
biliard in Sec. V, for k=wy5, by choosing
0=arctanl/2] (6= m/2—arctafl/2]) one obtains the state
n=2,m=1 (n=1, m=2). However, we do not need to € -~
know these “magic angles” to excite just one state. If we N\
consider ¢(r) =exdim/5x], the only bound state we can N
obtain isn=2, m=1, becausep is symmetric along theg 4
axis but the state=1, m=2 is antisymmetric aboug= 3!
Actually, this same idea would works for other shapes, say, ris)
for the stadium billiard.

Although error analysis of thé wall approach is still
under investigation, we find the followingl) relatively 3
crude midpoint quadrature approximations to the integral %,
equations to give a discrete, numerical version of the prob-
lem give results which are quite useful for many purposes;
(2) sensitive tests, such as measurements in “dark,” classi-
cally forbidden zones or fluxes through narrow slits require  FiG. 9. “Locally separable’t-n coordinate system at the point
more care, but careful quadratures are rewarded with ordegson C.
of magnitude increase in accuradg) from Eq.(33) we see
that ¢(r) properly vanishes od at the points;’s [observe
that, ifr=r;, in Eq. (33) we make the natural substitution of

Go(r=r;,rj)A; with M;;]. A good verification for the . . . . e
method is then to calculate the wave function in other point%evz/(g'g?ga]é rl?]\gﬁv(;;éﬁg:‘acgnv:tg;::éiE?:ggg?r:i;ggum?o'ﬂgh
on the boundary, for instance at the intermediate posts ¢ 4t 5 with amplitude?; and the other is reflected frothat

i.e., in the middle of; ands; ;. In doing so, for the typical ¢ yith amplitudeR. Here7and R are the transmission and
values ofk and N used in this paper for open and closed refiaction amplitudes for a one-dimensior@function (see
shapes, we found that on averdgé s;)|? is of the order of  Sec. 11l B).

10*1 We also noticed that by increasing the values of When we solve Eq(2) with V(r) given by Eq.(4), we in
|(s;)|? decrease. fact take into account the scattering of all the components
The method is currently being used to investigate thepy of ¢ along all points ofC, and then sum these contribu-
properties of mesoscopic semiconductor heterostructures. tions, building up the interference patterns between the in-

is hoped that more progress can be made using the structugeming and scattered waves.
of the T matrix to understand diffraction, semiclassical limit It is now clear howy is related to the permeability or

alongn, and zero along. Thus the term eXjikits] of the
incident plane waveb, does not feel the potential. The term

approximations, and multiple-scattering expansions. transparency of the “wall”C. | 7(k, y(s))|? gives the prob-
ability of a plane wavdof wave numbek), incident normal
ACKNOWLEDGMENTS to C at s, to be transmitted througb. The obvious results,

, _ |7(k,0)|>=1 and|7(k,+=)|2=0, follow from the expres-
M.G.E. da L. is supported by CNPdBrazi) and gign for the transmission amplitude in Sec. Il BAO the
A.S.L.-S. by thg National Sugnce Foundation graduate rezgme kind of analysis applies, but then we also have the
search fellowship program. This work was supported by thef)ossibility of bound states of.
National Science Foundation under Grant No. CHE-
9321260.
APPENDIX B: GENERAL BOUNDARY CONDITIONS

APPENDIX A: LEAKY BOUNDARIES Handling the general boundary conditi®) is somewhat

To clarify the physical meaning of in Eq. (4) [which  more difficult than the case of Dirichlet boundary conditions
here may be a function of positiors)], we consider the in Sec. Il. First, we assum&(s) a unit vector normal t@ at
two-dimensional case, witfl an arbitrary curveésee Fig. .  each points, and
Also, to simplify our discussion, we decompose the unper-
turbed (incorr_wilng) wave as(r)=fd%k c(k)¢(r), where Inef(s))=n(s)- VE(r(s)). (B1)

o (r)=(27) “exdik-r], and focus on each, .

For a particular poins on C, let us define a coordinate
systemt-n where the axes andn are, respectively, tangent
and normal toC1 at s (see Fig. 9. For s=l(xs,ys)=(ns,ts),

o (s) = (27) “exfdi(kxstkyyo) 1= (2m) exdi(kts + King], L ,

wrth k, andk, theF{conﬁ):)sonkénst)s o in systegntlf[ns. Wk(na i:)an P =¢(r)+ jcds Y(8")Go(r,r(s"))

think of our potential at (in the coordinate$-n) as “sepa-

rable,” being a one-dimensionad function ys8(n—ny), X{a(s")—[1—a(s")]dns ) (r(s")), (B2)

Second, we insert Ed1) into Eq. (3) to obtain
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which then we consider at a poin{s”) onC (with the same
notational abbreviation used in Seq) Il

1//(5”)=¢(S”)+f ds’ y(s')Gy(s",s")
X{a(s")+[1—a(s")]dns ) te(s"). (BI)

As it stands, Eq(B3) is nota linear equation inj(s). To fix
this, we multiply both sides bya(s") +[1— a(S")]dnn}
and define

(8" ={a(s") +[1— a(s")]dnen }¥(s"),

#°(s")={a(s")+[1—a(s")]dnsn} #(s"), (B4
Go(s".s")={a(s") +[1— a(s") ]9} Go(s".S').
This yields
wB(S”)=¢B(S”)+f ds’ y(s')Go(s".s")yB(s"),
(BS5)

which is now a linear equation i®, and is solved by

YB=[T-Gg A] 145, (B6)
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for

TgB(r(s')):f ds T8(s',s) ¢5(s). (B10)

As in Sec. Il, in the limity(s)=y—~, T® converges to
—[G817* which, when inserted into E4BS), gives

{a(s)+[1— a’(S)]&n(S)}lﬂ(S)
=yB(s)=([T-G§ [G§] 114®)(s)=0, (B11)

the desired boundary conditid@).
For completeness, we expaiil in a power series

TB=A+A 21 [GE K]i), (B12)
=

SO

TB(SI!’SI): ’y(S”) 5(SII_S/)+ ,y(su)< El [TB](j)(S//,S/)) ’
i=

where again the tildes emphasize that the equation is defingghere

only onC. The diagonal operatok is
(AH)(9)=n(9)f(9). (B7)
We define
TE=A[T-G§ A1, (B8)

that solves the original problem

H) =91+ [ 05 Golr.r(5) Tos(r(s), (B9

(B13)
[TB](j)(SII’SI)
zf ds; ...ds; Gg(s",s))
X¥(sj) ... GG(S2,51)¥(s1)8(,~5),
(B14)

allowing one, at least in principle, to compué(s”,s’), and
thus the wave function everywhere.
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