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Quantum scattering from arbitrary boundaries
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We present a conceptually and numerically simple method for obtaining scattering eigenstates from arbitrary
disconnected open or closed boundaries with very general boundary conditions. As a side effect of the deri-
vation, a solution for partially penetrable walls is also found. As in the boundary integral Green-function
method, an integral equation over the boundary results; however, our approach usesd-function potentials
~which can have finite or infinite strength! to enforce boundary conditions and construct the governing equa-
tions, rather than Green’s theorem.@S1063-651X~97!11308-3#

PACS number~s!: 05.45.1b, 03.40.Kf, 03.65.Nk
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I. INTRODUCTION

Much recent experimental and theoretical interest
been directed at boundary-value problems in two and th
dimensions. Mesoscopic quantum dots and semicondu
heterostructures have become very important research
and potentially useful devices. These are often accura
treated as billiard systems. Recently, quantum enginee
experiments on metallic surfaces@1# have constructed quan
tum walls made of relatively few atoms. If the atoms a
close enough together and some sorts of resonances@2# are
avoided, one may build devices with nearly perfect walls
illustrated by ‘‘quantum corrals’’@3#. Ordinary and super-
conducting thin microwave cavities have been constructe
address several issues involving quantum chaology
quantum localization; these are nearly exact quantum
liards. Of course, a solution to waveguide problems has b
of great technological importance for decades.

This paper strikes out in a different direction than mo
theoretical treatments, arriving at an interesting~and acces-
sible! approach to solving problems with sharp-wall
boundaries, e.g., billiards, waveguides, and various c
pound objects including baffles, chambers, etc. While
discussion here focuses on the Schro¨dinger equation in two
dimensions, the principles are applicable to other wave eq
tions in two or more dimensions.

A nonrelativistic quantum-mechanical problem is solv
only if one has a wave-function satisfyingboth the Schro¨-
dinger equation and the appropriate boundary conditio
The boundary conditions play an essential role in the s
tem’s dynamical behavior. For example, in billiard problem
~free particles confined to finite regions of configurati
space!, wave-function properties~such as nodal patterns
‘‘scarring,’’ etc.! and energy spectrum statistics, are qu
different if the corresponding classical system is integra
~e.g., a circle or square! or chaotic~e.g., a Bunimovich sta-
dium or Sinai billiard! @4#.

Several approaches exist to finding scattering solution

*Electronic mail: luz@monsoon.harvard.edu
†Electronic mail: lupu-sax@typhoon.harvard.edu
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closed billiards, usually aimed at either the inside or outs
solutions. A recent work has exploited connections betw
scattering problems and closed billiards@5#. Plane waves
have been used as basis functions for matching the solut
at a boundary@6#. Perhaps the most popular method to so
boundary-value problems is the boundary integral meth
@7#, which is based on the conversion of a differential equ
tion into an integral over the boundary of the physical regio
Although the boundary integral method is very useful, it h
some drawbacks. Most notably, a boundary integral calc
tion is valid only on one side of a closed boundary@8#, mak-
ing it necessary to obtain different expressions for the so
tion inside and outside. It is also difficult to solve problem
with disconnected and open boundaries.

It is desirable to have a method which~i! provides correct
solutions on all sides of each boundary,~ii ! gives solutions
when a given asymptotic behavior is imposed away from
boundary,~iii ! is simple and fast numerically, and~iv! is
amenable to perturbation theory and other analytic appr
mations in ‘‘small’’ changes in the shape of the bounda
@7#.

Properties~i! and ~ii ! are intrinsic to scattering theory
However, scattering theory assumes that the boundary
ditions are incorporated into the free Green function, wh
scattering takes place off of a potential. If we can creat
potential which in an appropriate limit forces the wave fun
tion to satisfy the boundary conditions, we may use a sc
tering approach to the problem.

In this work we show that a ‘‘d-wall’’ potential accom-
plishes this goal. Consider

V~r !5E
C
ds g~s!d„r2r ~s!…$a~s!2@12a~s!#]n~s!%,

~1!

where the integral runs over the surfaceC. The boundary
condition @9#

a~s!c„r ~s!…uC1@12a~s!#]n~s!c~r ~s!!uC50 ~2!

then emerges as an appropriate limit of the potential’s
rameters (g→`). For finiteg, the potential has the effect o
a penetrable or ‘‘leaky’’ wall. A similar idea has been us
2496 © 1997 The American Physical Society
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56 2497QUANTUM SCATTERING FROM ARBITRARY BOUNDARIES
to incorporate Dirichlet boundary conditions into certa
classes ofsolvable potentials in the context of the path
integral formalism@10#. Here we use thed wall more gen-
erally, resulting in a widely applicable and accurate pro
dure to solve boundary condition problems for arbitra
shapes.

This paper is organized as follows. In Sec. II we pres
the scattering theory approach for leaky and impenetra
Dirichlet walls. We solve two analytic examples in Sec. I
A numerical version of the method is given in Sec. IV, fo
lowed by some applications in Sec. V. The applications c
sidered include numerical solutions of some open syste
an analysis of the quality of the numerical method, pertur
tion of boundaries, and closed billiard problems. We lea
the derivations of the general boundary conditions~2! to Ap-
pendix B.

II. BOUNDARY WALL APPROACH

Consider the Schro¨dinger equation for ad-dimensional
system, H(r )c(r )5Ec(r ), with H5H01V. As is well
known, the solution forc(r ) is given by

c~r !5f~r !1E dr 8G0
E~r ,r 8!V~r 8!c~r 8!, ~3!

wheref(r ) solvesH0(r )f(r )5Ef(r ), andG0
E(r ,r 8) is the

Green function forH0. Hereafter, for notational simplicity
we will suppress the superscriptE in G0

E .
Now we introduce ad-type potential

V~r !5gE
C
ds d„r2r ~s!…, ~4!

where the integral is overC, a connected or disconnecte
surface.r (s) is the vector position of the points on C ~we
will call the set of all such vectorsS), andg is the potential’s
strength. Clearly,V(r )50 for r¹S.

In the limit g→`, the wavefunction will satisfy Eq.~2!
@with a(s)51# as shown below. In Appendix B we dea
with more general boundary conditions and a poten
strengthg(s) which may vary over the curve. For finiteg, a
wave function subject to potential~4! will satisfy a ‘‘leaky’’
form of the boundary condition as shown in Appendix A.

Inserting the potential~4! into Eq.~3!, the volume integral
is trivially performed with thed function, yielding

c~r !5f~r !1gE
C
ds8G0„r ,r ~s8!…c„r ~s8!…

5f~r !1E
C
ds8G0„r ,r ~s8!…Tf„r ~s8!…. ~5!

Thus, if g c„r (s)…5Tf„r (s)… is known for all s, the wave
function everywhere is obtained from Eq.~5! by a single
quadrature. Forr5r (s9) some point ofS,

c„r ~s9!…5f„r ~s9!…1gE
C
ds8G0„r ~s9!,r ~s8!…c„r ~s8!…,

~6!

which may be abbreviated unambiguously as
-

t
le

-
s,
-

e

l

c~s9!5f~s9!1gE ds8 G0~s9,s8! c~s8!. ~7!

We can formally solve this equation, obtaining

c̃5@ Ĩ 2g G̃0#21f̃, ~8!

wherec̃ andf̃ stand for the vectors ofc(s)’s andf(s)’s on
the boundary, andĨ for the identity operator. The tildes
remind us that the free Green-function operator and the w
vectors are evaluated only on the boundary.

We define

T5g @ Ĩ 2g G̃0#21, ~9!

and then it is easy to see thatTf in Eq. ~5! is given from Eqs.
~8! and ~9! by

Tf„r ~s8!…5E ds T~s8,s! f~s!. ~10!

We can put Eq.~9! into another form by formally expand
ing in a power series

g@ Ĩ 2gG̃0#215g Ĩ 1g(
j 51

`

@gG̃0# j . ~11!

In this way we find

T~s9,s8!5gS d~s92s8!1(
j 51

`

T~ j !~s9,s8!D , ~12!

where

T~ j !~s9,s8!5g jE ds1 . . . dsj G0~s9,sj !

3G0~sj ,sj 21! . . . G0~s2 ,s1! d~s12s8!.

~13!

In order to make contact with the standardt-matrix for-
malism in scattering theory@11#, we note that aT operator
for the whole space may be written as

t~r f ,r i !5E ds9ds8d„r f2r ~s9!… T~s9,s8!d„r i2r ~s8!….

~14!

Finally, we observe that Eq.~6! can be written as

c̃5@ Ĩ 1G̃0T#f̃. ~15!

For g→`, the operatorT converges to2@G̃0#21. Inserting
this into Eq.~15!, we have

c̃5@ Ĩ 2G̃0@G̃0#21#f̃50. ~16!

So,c satisfies a Dirichlet boundary condition on the surfa
C for g5`.
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III. ANALYTIC EXAMPLES

To illustrate the results of Sec. II, we explicitly analyz
two two-dimensional systems below. We assu
H0(r )52\2/(2m)¹ r

2 , the Hamiltonian for a free particle o
massm. In this caseG0(r ,r 8;k)5s H0

(1)(kur2r 8u), where
E5k2\2/(2m), s5(2m/\2)(2 i /4), and H0

(1) is the zero-
order Hankel function of the first kind, which corresponds
outgoing spherical solutions of the free Schro¨dinger equation
in two dimensions@12#.

A. Free particle interacting with a circle

ConsiderC5$(x,y)PR2 u x21y25R2%, parametrized by
u. From Eq. ~13! we have theT( j )’s given by „u(u9)
5(R,u9), u(u8)5(R,u8)…

T~1!~u9,u8!5g s H0
~1!~kA2RA12cos@u92u8# !,

~17!

and (j 52,3, . . . )

T~ j !~u9,u8!5~gs! j E
0

2p

du2 . . . du j

3H0
~1!~kA2RA12cos@u92u j # !•••

3H0
~1!~kA2RA12cos@u32u2# !

3H0
~1!~kA2RA12cos@u22u8# !. ~18!

The integrals in Eq.~18! can be solved with the help o
the identity~see Eq. 8.531 in Ref.@13#!,

H0
~1!~kA2RA12cos@u#!

5J0~kR!H0
~1!~kR!12( l 51

` Jl~kR!Hl
~1!~kR!cos@ l u#

~with Jl and Hl
(1) the first kind l -order Bessel and Hanke

functions, respectively!, and also with the relation (l 1 ,l 2 in-
tegers! *0

2pducos@l1(u2u8)#cos@l2(u2u9)#52p if l 15 l 250
and pd l 1l 2

cos@l1(u92u8)# otherwise. So, after tedious bu
straightforward calculations, one can show th
( j 51,2,3, . . . )

T~ j !~u9,u8!5
~g2p! j

2p S F0
j12(

l 51

`

Fl
jcos@ l ~u92u8!# D ,

~19!

whereFl5sJl(kR)Hl
(1)(kR). The full T matrix is obtained

by putting Eq.~19! into Eq. ~12!. Since the sum over the
T( j )’s is a geometric series, the calculations can be p
formed exactly, and we find

T~u9,u8!5gFd~u92u8!1S gF0

122pgF0

12(
l 51

`
gFl

122pgFl
cos@ l ~u92u8!# D G . ~20!
e

t

r-

As an application let us consider f~r !
5Jn(kr)exp@inu]/N, with N a normalization constant. We
have

Tf~u9!5gE
0

2p

du8S d~u92u8!1
gF0

122pgF0

12(
l 51

`
gFl

122pgFl
cos@ l ~u92u8!# D

3
1

NJn~kR!exp@ inu8#

5
g

~122pgFn!

1

NJn~kR!exp@ inu9#. ~21!

The wave function everywhere is given by Eq.~5!, or

c~r !5
1

NS Jn~kr !1
2pgWn~r !

@122pgFn#
Jn~kR! Dexp@ inu#,

~22!

with

Wn~r !51/~2p!*0
2pdu9G0~kAr 21R222rRcos@u9# !

3exp@ inu9#

.

This integral can be performed by again using Eq. 8.531
Ref. @13#, and one findsWn(r )5sJn(kr,)Hn

(1)(kr.),
wherer. (r,) is the larger~smaller! betweenr andR. Note
that Wn(R)5Fn . Thus Eq.~22! leads to

c~r !5
1

NS Jn~kr !

122pgsJn~kR!Hn
~1!~kR!

D exp@ inu# if r ,R

~23!

c~r !5
1

NS Jn~kr !1
2pgs@Jn~kR!#2Hn

~1!~kr !

122pgsJn~kR!Hn
~1!~kR!

D
3exp@ inu# if r .R.

One can verify~for instance, by directly solving the Schro¨-
dinger equation! that Eq. ~23! is the correct solution of a
two-dimensional particle interacting with a radiald function
@14#.

Now we consider the limitg→1`. We denote the radia
part of c(r ) by f g(r ) and we have the following:~i! For
r ,R, f `(r ) is different from zero only ifkR5anm , where
anm is the mth root of Jn . In this case
f `(r )5Jn(anmr /R), the correct solution for a particle con
fined in a circle. ~ii ! For r .R, f `(r )5 i @Jn(kr)Yn(kR)
2Jn(kR)Yn(kr)]/Hn

(1)(kR), with Yn the n-order Bessel
function of second kind~Neumann function!. Once more we
get the exact solution, this time for a free particle outside
impenetrable circular wall.

B. Free particle interacting with an infinite line

Often one may be interested only in a particular kind
incoming wavef(r ). In this case it is not necessary to ca
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56 2499QUANTUM SCATTERING FROM ARBITRARY BOUNDARIES
culateT, but justTf . Here we show a direct calculation o
Tf for C the line x50 ~parametrized byy) and f(r )
5exp@i(kxx1kyy)#/N, with k25kx

21ky
2 , andN an appropriate

normalization constant. We also assumekx.0, i.e.,f is in-
coming from the left~in the x direction!.

Putting Eq.~12! into Eq. ~10!, we can easily show tha
@r (y)5(0,y)#

Tf~y!5
1

N exp@ ikyy# (
j 50

`

@gI ~0!# j

5
1

N exp@ ikyy#
1

@12gI ~0!#
, ~24!

whereI (z)5s *2`
1`dy H0

(1)(kAy21z2) exp@ikyy#.
By inserting Eq.~24! into Eq. ~5!, we have

c~r !5
1

N exp@ ikyy#S exp@ ikxx#1
gI ~x!

12gI ~0! D . ~25!

The integral I is solved with the help of identity Eq
6.616-3 in Ref.@13#, or

I ~x!5
m

i\2kx

exp@ ikxuxu#. ~26!

Defining z5(gm)/( i\2kx), T(kx)51/(12z), and R(kx)
5z/(12z), we finally find

c~r !5
1

N exp@ ikyy#

3H „exp@ ikxx#1R~kx!exp@2 ikxx#… if x,0

T~kx!exp@ ikxx# if x.0.

~27!

We observe that the infinite line is a separable syst
Thus the solution of the Schro¨dinger equation is a plan
wave in the y direction times the solution of a one
dimensionald function in thex direction. Actually, one can
verify that Eq.~27! is exactly in this form, therefore we hav
obtained the correct wave function for the problem. If w
take the limitg→1`, the line becomes an infinite wall, an
c should be zero forx>0 ~recall that the incident wave
comes from the left!. Indeed, this is the result we obtain fro
Eq. ~27!.

IV. T MATRIX: A NUMERICAL TREATMENT

As discussed in Sec. II and illustrated in Sec. III, the k
idea in our method is to calculateT and/orTf on C, and then
to perform integral~5!. Unfortunately, in the great majority
of cases the analytical treatment is too hard to apply. In s
cases we consider the problem numerically.

We divide the regionC into N parts,$Cj% j 51 . . .N . Then
we approximate
.

y

h

c~r !5f~r !1(
j 51

N E
Cj

ds g G0„r ,r ~s!… c„r ~s!…

'f~r !1(
j 51

N E
Cj

ds g G0„r ,r ~s!… c„r ~sj !…, ~28!

with sj the middle point ofCj andr j5r (sj ). Now, consider-
ing r5r i we write c(r i)5f(r i)1( j 51

N g Mi j c(r j ) ~for M ,
see discussion below!. If C5„c(r1), . . . ,c(rN)…, and
F5„f(r1), . . . ,f(rN)…, we haveC5F1gMC, and thus
gC5TF , with T5g(I2gM )21, which is the discreteT
matrix. So

gC i5~TF! i5g(
j 51

N

@~ I2gM !21# i j F j ~29!

and

c~r !'f~r !1(
j 51

N

G0~r ,r j ! D j ~TF! j , ~30!

where we have used a mean value approximation to the
integral in Eq.~28!, and definedD j , the volume ofCj .

It follows from Eq. ~28! that

Mi j 5E
Cj

ds G0„r i ,r ~s!…. ~31!

Unless otherwise mentioned, we will approximate

Mi j 'G0~r i ,r j ! D j ~32!

in our example calculations. However,G0(r i ,r j ) may di-
verge fori 5 j ~e.g., the free-particle Green functions in tw
or more dimensions!. So, for the diagonal termsMii we ex-
plicitly perform integral~31!. We discuss these approxima
tions in detail in Sec. V B.

If we considerg→`, it is easy to show from the abov
results that

c~r !'f~r !2(
j 51

N

G0~r ,r j !D j ~M21F! j . ~33!

Equation~33! is then the approximated wave function of
particle underH0 interacting with an impenetrable regionC.

V. APPLICATIONS

Here we shall to explore the possibilities of applicatio
for the method described in previous Sec. IV. We conc
trate on two-dimensional systems and assumeg→`, which
corresponds to Dirichlet boundary conditions for the wa
function onC. Thus from now on the calculations are don
by using Eq.~33!, where we consider only sets$Cj% such that
D j5D a constant~all the curvesCj have the same tota
length D). For the plots ofuc(x,y)u2 we take a grid of
4003400 points in thex-y plane. Since, for our purposes
we are only concerned with relative amplitudes, in each
gion considered we normalize the maximum value ofucu2

~or c in Sec. V D! to be 1. For simplicity,\52m51, so
E5k2.
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A. Open C’s

Figures 1–3 show a sample of different open forms forC.
In Figs. 1–3~a! we plot ucu2. Density plots of the modulus of
the corresponding matrix elementsuTi j u are presented in
Figs. 1–3~b!. We used 200~400! points on theC’s for Figs.
1 and 2~3!. ThusT was obtained by inverting a 2003200
(4003400) matrix. Here we should note that~i! by construc-
tion theT’s are symmetric matrices; and~ii ! in general, the
larger uTi j u ’s are those from a band around the main diago
nal, as one can see in the figures.

In Fig. 1~a! we show the scattering of a plane wave by the
semicircle x21y251 (x>0), and by the segment of pa-
rabola x52y2 (21<y<1). The wavelengthl52p/k is
2p/15'0.42. In both cases we consider three differen
angles between the wave vector of the incoming wave an
the x axis: 0°, 45°, and 180°.

FIG. 1. ~a! Scattering of plane waves by a semicircle and a
segment of the parabola.~b! Density plots ofuTu for the semicircle
and the segment of the parabola in~a!. The gray scale is valid for all
plots of ucu2 and uTu in this paper.
-

t
d

Figure 2~a! shows a diffraction net formed by five seg-
ments of line alongy50. Each has length 0.4 and is sepa-
rated from the next by a distance of~i! 0.21, ~ii ! 0.42, ~iii !
0.84, and ~iv! 0.42. For the incident plane wave
l52p/15'0.42, with the wave vector forming angles of 0°
@~i!–~iii !#, and 30°@~iv!#, with thex axis.

In Fig. 3~a! we consider two semicircles~represented in
the top left graphic!. The f ’s are f(r )5exp@ikx#, and
f(r )5J0(kur2r cu) @with r c being ~0,0! and ~3.5,3.5!#. For
the three,k520 (l'0.31), so theT matrix displayed in Fig.
3~b! is the same in all cases.

B. Performance of the numerical method

The numerical solution~33! approaches the solution~5! as
N→`. In practice, we chooseN to be some finite but large
number. In this section we explain how to chooseN for a
given problem, and how the approximation~32! affects this
choice.

In order to analyze the performance of the numerical so-
lution, we must define some measure of the quality of the
solution. We measure how well a Dirichlet boundary blocks
the flow of current directed at it. Thus we measure the cur-
rent

j5Im$c* ~r !¹c~r !%, ~34!

FIG. 2. Scattering of plane waves by diffraction nets.~b! Den-
sity plots ofuTu for the diffraction nets in~a!. The diffraction effects
are readily identified in theuTu matrix as the bright patterns off the
main diagonal.
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56 2501QUANTUM SCATTERING FROM ARBITRARY BOUNDARIES
behind a straight wall of lengthl . To simplify the analysis
we integratej•n over a ‘‘detector’’ located on one side of
wall with a normally incident plane wave on the other sid
We divide this integrated current by the current which wou
have been incident on the detector without the wall pres
We call this ratioT the transmission coefficient of the wal
Instead ofT as a function ofN, we considerT vs r, where
r52pN/( lk) is the number of boundary pieces per wav
length.

We consider three methods of constructing the matrixM
for each value ofr. The first is the approximation used in th
applications in this paper~where typicallyr'40)

FIG. 3. Scattering by the two semicircles represented in the
left graphic. The incomingf ’s are~top right! a plane-wave function
and ~bottom! a Bessel functionJ0. ~b! Density plot of uTu for the
two semicircles in~a!. It is interesting to note the much riche
structure of theT matrix for the two semicircles in comparison wit
the T matrix for the single semicircle in Fig. 1~b!.
.

t.

-

Mi j 5H E
Ci

ds G0„r i ,r ~s!…, i 5 j

DG0~r i ,r j !, iÞ j ,

~35!

which we call the ‘‘fully approximated’’M . The next is a
more sophisticated approximation with

Mi j 55 E
Cj

ds G0„r i ,r ~s!…, usi2sj u,
k

k

DG0„r i ,r j…, usi2sj u>
k

k
,

~36!

which we call the ‘‘band-integrated’’M because we perform
the integrals only inside a band ofk/(2p) wavelengths. Fi-
nally, we consider

Mi j 5E
Cj

ds G0~r i ,r ~s!! ; i j , ~37!

which we call the ‘‘integrated’’M .
Numerically, the ‘‘band-integrated’’ and ‘‘integrated’’M

require far more computational work than the ‘‘fully ap
proximated’’ M which requires the fewest integrals. A
methods of calculatingM scale asO(N2). The calculation of
T or TF from M scales asO(N3) and the calculation of
c(r ) for a particularr from a givenTF scales asO(N).
Which of these various calculations dominates the comp
tion time depends on what sort of computation is being p
formed. When computing wave functions, computation tim
is typically dominated by the large number ofO(N) vector
multiplications. However, when calculatingc(r ) in only a
small number of places, e.g., when performing a flux cal
lation, computation time is often dominated by theO(N3)
construction ofTF.

In Fig. 4 we plot log10T vs r for the three methods abov
and 2<r<30. We see that all three methods block mo
than 99% of the current forr.5. However, it is clear from
the figure that the ‘‘integrated’’M and to a lesser extent th
band integratedM strongly outperform the fully approxi-
matedM for all r plotted.

C. Perturbation theory

One can use perturbative methods to solveC’s of similar
shapes. Consider two curves,CB andCA, of same total length
@15#, as displayed in Fig. 5. It is not difficult to write down
formal expression relating theirT matrices. A bit of algebra
shows@with the help of Eqs.~9! and ~11!#

TB5TA@ I 2G TA#215TA~ I 1G TA1G TA G TA1••• !,
~38!

where

G~s9,s8!5G0
B~s9,s8!2G0

A~s9,s8!

5G0„rB~s9!,rB~s8!…2G0„rA~s9!,rA~s8!…,

~39!

with rB(s) and rA(s), respectively, the vector positions o
the points onCB andCA. If the C’s are similar,G is small and
we may truncate Eq.~38! at some order inG. Although, for

p
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FIG. 4. Transmission of a finite flat wall fo
the various approximations ofM . For the ‘‘band-
integrated’’ method,k516p.
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the purposes of the present work, we are not going to
velop the above equations any further, we will, for a partic
lar example, study Eq.~38! in its simplest form, i.e., by
taking the zero-order approximationTB'TA.

In Fig. 6 we have the curvex5( l /2)sin@4py#
(0<y<p/2) and an incident plane wavef(r )5exp@ikx#,
k515. We plot in Fig. 6~a! ucu2 calculated by using in Eq
~33! ~i! the correct~numerical! T, and~ii ! the ~numerical! T
for a straight line of same total length as the sinelike cu
considered. In all cases we take 200 points onC to obtain the
T matrix. The values ofl are l 50.1, 0.3, 0.5, and 0.7. For
better comparison, we plot in Fig. 6~b! uc(x,y)u2 ~for fixed
y’s! as function ofx. We see that the solutions using theT
matrix for a straight line, when compared with those of c
rectT, are good forl 5 0.1 and 0.3, intermediate forl 5 0.5,
and worst forl 50.7. These results are not due to the parti
lar shape assumed forC. We have done this same kind o
analysis for other shapes and found that for small defor
tions of the curves, one can obtain good results by just c
sidering the zeroth-order perturbative expansion of ev
otherT matrix.

D. ClosedC’s: billiard problems

A last point we shall discuss isC as a closed curve, with
its inside region being then a billiard. In this case our pro
dure provides a scattering approach for the quantization
the system, which is, however, different from other scatt
ing methods@16#.

The idea is straightforward. We have an incident wa
functionf of energyE. If E is not a resonance energy of th
billiard, c is the appropriate scattering solution outsideC and
zero inside. But ifE is an eigenenergy of the problem, the
c should be, inside the billiard, a linear combination of t
eigenfunctions corresponding to that particular energy.

To verify this, we suppose a two-dimensional square b
@with corners located at~0,0!, ~0,1!, ~1,1! and ~1,0!#. The
quantized energies arep2(n21m2) (n,m51,2, . . . ), with
the wave functions ~up to a normalization constan!
sin@npx#sin@mpy#. For the incoming waves we conside
f(r )5exp@i(kxx1kyy)#, with kx5kcos@u# and ky5ksin@u#
(E5k2). In the numerical calculations of theT matrix,
N5200.

In Fig. 7~a! we have u5p/4 (kx5ky) and ~i!
k50.997A2p, ~ii ! k51.001A2p, and ~iii ! k51.004A2p.
e-
-

e

-

-

a-
n-
y

-
of
r-

e

x

The exact ground-state energy of the box correspond
k5A2p. From the plots ofucu2 in ~i! and ~iii ! we see that
the wave function inside the square is quite small. To give
order of magnitude, the maximum ofucu2 inside the box is
about 40 times smaller than the maximum ofucu2 outside

@see the plot ofuc(x, 1
2 )u2 againstx for these two cases#. If

we go further away from the resonance energy, thec within
the box practically vanishes. That is, the resonances are
sharp in energy. For example, if we assume the resona
width DE to be the difference between the energies of~iii !
and ~i!, thenDE is just 1% of the correct ground-state e
ergy.

The maximum amplitudes forc within C is reached at
k51.001A2p, an error of only 0.2%. In the density plot i
~ii !, the amplitudes inside the square are so much higher
the scattering wave outside~around 50 times! that to obtain
some contrast we have plotted log10ucu2 instead ofucu2. We
also compareuc(x,1/2)u2 calculated numerically~solid line!
with the exact solutionusin(px)sin(p/2)u2 ~dashed line!. We
almost cannot distinguish between the two. By using largeT
matrices, one can narrowDE as well improve the values fo
the resonance energy.

We may consider the effect of changing the direction
the incident wave. For the calculations of the ground st
above, different choices foru give the same sort of result
displayed in Fig. 7~a!, even for the cases ofu50 and
u5p/2. However, there is an angular dependence when
consider degenerate states. For instance, forE550p2, the
three incident wave vectorsu'8.13° (kx57p,ky5p),
u545° (kx55p,ky55p), andu'81.87° (kx5p,ky57p)
correspond, respectively, to the eigenstates:n57,m51;

FIG. 5. Two curvesCA andCB of the same total length.
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FIG. 6. ~a! Scattering of the plane waves by sinelike shapes calculated with~i! the correctT matrix and~ii ! the T matrix for a straight
line. ~b! Same as~a!, but now foruc(x,y)u2 as a function ofx for some fixed values ofy.
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n55,m55; andn51,m57. When the incident plane wave
with the correct resonant wave numberk ~which in our cal-
culations is around 0.1% off the exact valueA50p), has one
of the above three directions, then only that particular eig
state is excited. For arbitrary directions,c is a linear combi-
nation of the degenerate states.

In Fig. 7~b! we show the plot of thec for ~i! u'81.87°,
~ii ! u545°, and~iii ! u'26.56°.~i! and ~ii ! agree very well
with their corresponding single eigenstates. For~iii !, we find
that the coefficientscn,m of the linear combination are
c1,754.317, c5,5527.096, and c7,1521 ~we have set
c7,1521 and normalized the other two in terms of it!. We

also comparec( 1
2 ,y) from our calculations~continuous line!

with the exact~dashed line! for all cases. A theory explaining
how the c’s depend onu will be the subject of a future
contribution.
-

Finally, we briefly give an example of resonance for
open curveC. Consider two semicircles separated by a d
tanced, as schematically represented in Fig. 8. The incom
wave is f(r )5exp@ikx#, with k510. For theT matrix we
take 400 points onC. Varying d we can have pattern forma
tions within the semicircle region. In detail we plo
uc(x,0.53)u2 for two very close values ofd, which shows the
dramatic difference of amplitudes ofc in and out of the
semicircle region according to whether or not we are in re
nance.

VI. CONCLUSIONS AND PROSPECTS

The scatteringT matrix which we calculate in this pape
is an object intrinsic to the shape of the walls and the ene
it takes any incoming conditionf(r ) and turns it into a
solution which vanishes on the walls~or satisfies other
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FIG. 7. ~a! Scattering of plane waves by a square billiard for three different values ofk. ~b! Plots of the scattering excitedc inside the
square billiard for three different angles of the incident wave vectors. In detail we compare the exact~continuous line! and numerical~dashed
line! c(0.5,y)’s as functions ofy.
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boundary condition there; see Appendix B!. It also has a very
appealing physical interpretation: referring to Eqs.~14!, ~5!,
and ~10!, we see that the elementT(s9,s8) is the amplitude
for hitting the walls for the first time atr (s8) and for the last

FIG. 8. Scattering of plane waves by two semicircles for diffe
ent distancesd between them.
time at r (s9). All intermediate multiple collisions with dif-
ferent parts of the wall are included inT(s9,s8). After a
discretization and inversion of the boundary Green funct
to obtain Ti j 5T(si ,sj ), inspection of the structure ofTi j

reveals the following general properties:~1! uTi j u is large for
ur (si)2r (sj )u<l(E), wherel(E) is the wavelength at en
ergyE; ~2! sharp corners and wall ends tend to give brigh
rows and columns in the density plots ofT @see Figs.
1–3~b!#, corresponding to higher amplitude for starting
leaving from such sources of diffraction; and~3! other bands
in uTi j u reveal scattering between distinct or disjoint sectio
of walls that are reached by travel through space.

We make two points regarding the case of closedC’s.
First, we have seen from the square billiard example that
resonances are very narrow, and the method gives very g
results for the eigenstates. The computational time neces
in scanningk to find the correct resonances is common to
boundary methods, and is the ‘‘price paid’’ for the efficien
of working in the reduced space of the boundary only.

The second point concerns the question: what is the m
appropriatew to find the bound states? Except for degene
cies, the bound-state wave function dominates near
bound-state energies, and one can be fairly loose abou

-
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56 2505QUANTUM SCATTERING FROM ARBITRARY BOUNDARIES
precise nature ofw. In the case of degeneracy induced
symmetry, the incoming wave will excite a particular line
combination: one should of course choose the incom
wave with the desired symmetry. For example, for the squ
billiard in Sec. V, for k5pA5, by choosing
u5arctan@1/2# (u5p/22arctan@1/2#) one obtains the stat
n52, m51 (n51, m52). However, we do not need t
know these ‘‘magic angles’’ to excite just one state. If w
considerw(r )5exp@ipA5x#, the only bound state we ca
obtain isn52, m51, becausew is symmetric along they
axis but the staten51, m52 is antisymmetric abouty5 1

2!
Actually, this same idea would works for other shapes, s
for the stadium billiard.

Although error analysis of thed wall approach is still
under investigation, we find the following:~1! relatively
crude midpoint quadrature approximations to the integ
equations to give a discrete, numerical version of the pr
lem give results which are quite useful for many purpos
~2! sensitive tests, such as measurements in ‘‘dark,’’ cla
cally forbidden zones or fluxes through narrow slits requ
more care, but careful quadratures are rewarded with or
of magnitude increase in accuracy;~3! from Eq. ~33! we see
that c(r ) properly vanishes onC at the pointsr i ’s @observe
that, if r5r i , in Eq. ~33! we make the natural substitution o
G0(r5r i ,r j )D j with Mi j #. A good verification for the
method is then to calculate the wave function in other po
on the boundary, for instance at the intermediate pointss̄ i ,
i.e., in the middle ofsi andsi 11. In doing so, for the typical
values ofk and N used in this paper for open and clos
shapes, we found that on averageuc( s̄ i)u2 is of the order of
1024. We also noticed that by increasingN the values of
uc( s̄ i)u2 decrease.

The method is currently being used to investigate
properties of mesoscopic semiconductor heterostructure
is hoped that more progress can be made using the stru
of the T matrix to understand diffraction, semiclassical lim
approximations, and multiple-scattering expansions.
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APPENDIX A: LEAKY BOUNDARIES

To clarify the physical meaning ofg in Eq. ~4! @which
here may be a function of position,g(s)#, we consider the
two-dimensional case, withC an arbitrary curve~see Fig. 9!.
Also, to simplify our discussion, we decompose the unp
turbed ~incoming! wave asf(r )5*d2k c(k)fk(r ), where
fk(r )5(2p)21exp@ik•r #, and focus on eachfk .

For a particular points on C, let us define a coordinat
systemt-n where the axest andn are, respectively, tangen
and normal toC at s ~see Fig. 9!. For s5(xs ,ys)5(ns ,ts),
fk(s) 5 (2p)21exp@i(kxxs1kyys)#5 (2p)21exp@i(ktts1knns)#,
with kt and kn the components ofk in systemt-n. We can
think of our potential ats ~in the coordinatest-n) as ‘‘sepa-
rable,’’ being a one-dimensionald function gsd(n2ns),
g
re

y,

l
-
;
i-
e
rs

s

e
It

ure

-
e
-

r-

along n, and zero alongt. Thus the term exp@iktts# of the
incident plane wavefk does not feel the potential. The term
exp@iknns#, however, interacts with thed potential splitting in
two along then direction. One part is transmitted throug
C at s with amplitudeT, and the other is reflected fromC at
s with amplitudeR. HereT andR are the transmission an
reflection amplitudes for a one-dimensionald function ~see
Sec. III B!.

When we solve Eq.~2! with V(r ) given by Eq.~4!, we in
fact take into account the scattering of all the compone
fk of f along all points ofC, and then sum these contribu
tions, building up the interference patterns between the
coming and scattered waves.

It is now clear howg is related to the permeability o
transparency of the ‘‘wall’’C. uT„k,g(s)…u2 gives the prob-
ability of a plane wave~of wave numberk), incident normal
to C at s, to be transmitted throughs. The obvious results
uT(k,0)u251 and uT(k,1`)u250, follow from the expres-
sion for the transmission amplitude in Sec. III B. Ifg,0 the
same kind of analysis applies, but then we also have
possibility of bound states onC.

APPENDIX B: GENERAL BOUNDARY CONDITIONS

Handling the general boundary condition~2! is somewhat
more difficult than the case of Dirichlet boundary conditio
in Sec. II. First, we assumen(s) a unit vector normal toC at
each points, and

]n~s! f „r ~s!…5n~s!•¹ f „r ~s!…. ~B1!

Second, we insert Eq.~1! into Eq. ~3! to obtain

c~r !5f~r !1E
C
ds8g~s8!G0„r ,r ~s8!…

3$a~s8!2@12a~s8!#]n~s8!%c„r ~s8!…, ~B2!

FIG. 9. ‘‘Locally separable’’t-n coordinate system at the poin
s on C.
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which then we consider at a pointr (s9) on C ~with the same
notational abbreviation used in Sec. II!

c~s9!5f~s9!1E ds8g~s8!G0~s9,s8!

3$a~s8!1@12a~s8!#]n~s8!%c~s8!. ~B3!

As it stands, Eq.~B3! is not a linear equation inc(s). To fix
this, we multiply both sides by$a(s9)1@12a(s9)#]n(s9)%
and define

cB~s9!5$a~s9!1@12a~s9!#]n~s9!%c~s9!,

fB~s9!5$a~s9!1@12a~s9!#]n~s9!%f~s9!, ~B4!

G0
B~s9,s8!5$a~s9!1@12a~s9!#]n~s9!%G0~s9,s8!.

This yields

cB~s9!5fB~s9!1E ds8g~s8!G0
B~s9,s8!cB~s8!,

~B5!

which is now a linear equation incB, and is solved by

c̃B5@ Ĩ 2G̃0
B L̃#21f̃B, ~B6!

where again the tildes emphasize that the equation is defi
only on C. The diagonal operatorL̃ is

~L̃ f !~s!5g~s! f ~s!. ~B7!

We define

TB5L̃@ Ĩ 2G̃0
B L̃#21, ~B8!

that solves the original problem

c~r !5f~r !1E ds8G0„r ,r ~s8!… TfB
B

„r ~s8!…, ~B9!
.

r,

cs

I.

d

p-
ed

for

TfB
B

„r ~s8!…5E ds TB~s8,s! fB~s!. ~B10!

As in Sec. II, in the limitg(s)5g→`, TB converges to
2@G̃0

B#21 which, when inserted into Eq.~B5!, gives

$a~s!1@12a~s!#]n~s!%c~s!

5cB~s!5~@ Ĩ 2G̃0
B @G̃0

B#21#f̃B!~s!50, ~B11!

the desired boundary condition~2!.
For completeness, we expandTB in a power series

TB5L̃1L̃S (
j 51

`

@G̃0
B L̃# j D , ~B12!

so

TB~s9,s8!5g~s9! d~s92s8!1g~s9!S (
j 51

`

@TB#~ j !~s9,s8!D ,

~B13!

where

@TB#~ j !~s9,s8!

5E ds1 . . . dsj G0
B~s9,sj !

3g~sj ! . . . G0
B~s2 ,s1!g~s1!d~s12s8!,

~B14!

allowing one, at least in principle, to computeTB(s9,s8), and
thus the wave function everywhere.
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